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Abstract—Reaction of dialkyl (2S,3S)- or (2S,3R)-tetrahydro-3-hydroxy-5-oxo-2,3-furandicarboxylates with POCl3 in pyridine
followed by diazomethane resulted in the isolation of dialkyl 2S-4-methoxy-5-oxo-2,5-dihydro-2,3-furandicarboxylates, which are
analogues of the Quararibea metabolite chiral enolic-c-lactone (3-hydroxy-4,5-(R)-dimethyl-2(5H)-furanone). An unusual a-
hydroxylation of c-butyrolactone takes place involving POCl3 in pyridine. When the dehydration was facilitated with methanesulfo-
nyl chloride in triethylamine, instead of POCl3, aromatic dialkyl 5-[(methylsulfonyl)oxy]-2,3-furandicarboxylates were obtained.
� 2006 Elsevier Ltd. All rights reserved.
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It is estimated that chiral butenolide sub-structures form
building blocks for the synthesis of about 13,000 natural
products including molecules bearing 2(5H)-furanone
subunits.1 These structural motifs include pheromones,
the antibiotic strobilin, pencillianic acid, pulvinones,
and several secondary metabolites of fungal and marine
origin as well as sesquiterpenoid lactones.2 Often, chiral
butenolides have been obtained either from carbohy-
drates, c-keto acids, glutamic acid or from acyclic sys-
tems such as acetylenic compounds, pyruvic acid
derivatives, and cyanohydrins of conjugated aldehydes,
mostly involving multi-step procedures.3,4

During a project devoted to the synthesis of chiral c-
butyrolactone based molecules, we recently identified
(2S,3S)- and (2S,3R)-tetrahydro-3-hydroxy-5-oxo-2,3-
furandicarboxylic acids 1 and 2, which can be obtained
in large amounts from the chiral pool, as ideal starting
materials for the synthesis of several interesting chiral
c-butyrolactone based molecules (Fig. 1).5

Minor functional group modification of 1 and 2 can give
isocitric acid 3, the quararibea metabolite the chiral eno-
lic-c-lactone 4, (+)-avenaciolide 5, (+)-canadensolide 6,
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mescaline isocitrimide lactone 7, cis and trans whisky
lactones 8, cinatrin C2 9 and C3 10 and (�)-funebrine
11.6–14 Among these, the syntheses or partial syntheses
of 3, 5, 6, and 7 from 1 or 2 have been carried out.15

Treatment of ester derived from 1 and 2, that is, 12a–c
and 13a–c5 with POCl3 in pyridine followed by work-
up with aqueous HCl furnished a polar intermediate
which on treatment with diazomethane in ether gave
the unexpected methyl ethers of the chiral enolic-c-
lactones 14a–c instead of the anticipated dehydration
product 15 (R = CH3, CH2CH3, CH2C6H5) (Scheme
1).16 a-Hydroxylation of c-butyrolactones 12 and 13
occurs involving POCl3 in pyridine.

The formation of compounds 14a–c was confirmed by
IR, 1H and 13C NMR, and mass spectroscopy.17,18
O H
C

CO

O

O
P

O

Cl

Cl

O H
C

CO

O

P
OHO

HOH O

ii  H3

O H
COOCH3

COOCH3

O

HO

O H
COOCH3

COOCH3

O

CH3O

-H3PO3

i POCl3, pyridine,

12a

14a

i

iii

O H
COOCH3

COOCH3

O

OH

Scheme 2.
For example, the IR spectrum of 14a shows a peak at
1740 cm�1 indicative of the presence of a lactone moiety,
the 1H NMR spectrum shows the presence of an –OCH3

group at 3.95 ppm whilst the 13C NMR spectrum shows
the presence of olefinic carbons at d 133.4 and
126.7 ppm. In addition, DEPT experiments clearly indi-
cated the absence of CH2 protons and the presence of
three CH3 and one CH moieties. The HMBC spectrum
confirmed the position of the olefinic bond at C3–C4.19

However, when the reaction was repeated with the iso-
propyl esters 12d or 13d, the simple dehydration product
15 was obtained (Scheme 1).20,21

In order to gain a clear understanding of the above
observation, the dehydrations of 12a, 12d, 13a, and
13d were effected using methanesulfonyl chloride in
OOCH3

OCH3

H

O H
COOCH3

O

COOCH3

O OP H
Cl

Cl

O H
COOCH3

O

COOCH3
OO

P
Cl

O
H

H

-HCl

OOCH3

OCH3

H

O+,

17

iii. CH2N2, ether

ii



O
H

COOCH3

COOCH3

O

OH

O
H

COOCH3

O

O

COOCH3

S
CH3

O

O

S

CH3

O

O

OCH3SO2O COOCH3

COOCH3

i.  MsCl, TEA,

12a

0 oC

16a

i

-CH3SO3H

Scheme 3.

C. Gopinath et al. / Tetrahedron Letters 47 (2006) 7957–7960 7959
triethylamine.22 Interestingly, instead of 14 or 15
(R = CH3, CH(CH3)2), aromatic dialkyl-5-[(methyl-sul-
fonyl)oxy]-2,3-furandicarboxylates 16a and 16d were
isolated irrespective of the substitution in 12 and 13.
The formation of 16 was confirmed by IR, 1H, and
13C NMR and mass spectroscopy.23,24

The formation of compounds 14a–c can be explained on
the basis of an intramolecular rearrangement mecha-
nism involving cyclic intermediate 17 (Scheme 2).

Enolisation of the lactone carbonyl in 12 and 13 occurs
with both POCl3 and methanesulfonyl chloride, how-
ever, these acid chlorides react differently with 12 and
13. Cyclic intermediates 17 are not involved in the reac-
tion with methanesulfonyl chloride (Scheme 3).

The syntheses of several c-butyrolactone based natural
products are underway starting from furandicarboxylic
acids 1 and 2.
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